Developers of highly configurable performanceintensive software systems often use a type of in-house performance-oriented "regression testing" to ensure that their modifications have not adversely affected their software's performance across its large configuration space. Unfortunately, time and resource constraints often limit developers to in-house testing of a small number of configurations and unreliable extrapolation from these results to the entire configuration space, which allows many performance bottlenecks and sources of QoS degradation to escape detection until systems are fielded. To improve performance assessment of evolving systems across large configuration spaces, we have developed a distributed continuous quality assurance (DCQA) process called main effects screening that uses in-the-field resources to execute formally designed experiments to help reduce the configuration space, thereby allowing developers to perform more targeted in-house QA. We have e...
Cemal Yilmaz, Arvind S. Krishna, Atif M. Memon, Ad