Traditionally, combinatorial optimization problems (such as maximum flow, maximum matching, etc.) have been studied for networks where each link has a fixed capacity. Recent research in wireless networking has shown that it is possible to design networks where the capacity of the links can be changed adaptively to suit the needs of specific applications. In particular, one gets a choice of having few high capacity outgoing links or many low capacity ones at any node of the network. This motivates us to have a re-look at the traditional combinatorial optimization problems and design algorithms to solve them in this new framework. In particular, we consider the problem of maximum bipartite flow, which has been studied extensively in the traditional network model. One of the motivations for studying this problem arises from the need to maximize the throughput of an infrastructure wireless network comprising base-stations (one set of vertices in the bipartition) and clients (the other set ...