—Malware attacks constitute a serious security risk that threatens to slow down the large scale proliferation of wireless applications. As a first step towards thwarting this security threat, we seek to quantify the maximum damage inflicted on the system owing to such outbreaks and identify the most vicious attacks. We represent the propagation of malware in a batteryconstrained mobile wireless network by an epidemic model in which the worm can dynamically control the rate at which it kills the infected node and also the transmission range and/or the media scanning rate. At each moment of time, the worm at each node faces the following trade-offs: (i) using larger transmission range and media scanning rate to accelerate its spread at the cost of exhausting the battery and thereby reducing the overall infection propagation rate in the long run or (ii) killing the node to inflict a large cost on the network, however at the expense of loosing the chance of infecting more susceptible ...
M. H. R. Khouzani, Saswati Sarkar, Eitan Altman