In this contribution, models of wireless channels are derived from the maximum entropy principle, for several cases where only limited information about the propagation environment is available. First, analytical models are derived for the cases where certain parameters (channel energy, average energy, spatial correlation matrix) are known deterministically. Frequently, these parameters are unknown (typically because the received energy or the spatial correlation varies with the user position), but still known to represent meaningful system characteristics. In these cases, analytical channel models are derived by assigning entropy-maximizing distributions to these parameters, and marginalizing them out. For the MIMO case with spatial correlation, we show that the distribution of the covariance matrices is conveniently handled through its eigenvalues. The entropy-maximizing distribution of the covariance matrix is shown to be a Wishart distribution. Furthermore, the corresponding proba...
Maxime Guillaud, Mérouane Debbah, Aris L. M