Sciweavers

CLEIEJ
2008

Measuring Contribution of HTML Features in Web Document Clustering

14 years 17 days ago
Measuring Contribution of HTML Features in Web Document Clustering
Documents in HTML format have many features to analyze, from the terms in special sections to the phrases that appear in the whole document. However, it is important to decide which feature contributes the most to separate documents according to classes. Given this information, it is possible not to include certain feature in the representation for the document, given that it is expensive to compute and doesn't contribute enough in the clustering process. By using a novel representation model and the standard k-means algorithm, we discovered that terms in the body of document contributes the most, followed by terms in other sections. Suffix tree provides poor contribution in that scenario, while term order graphs influence a little the partition. We used 4 known datasets to support the conclusions.
Esteban Meneses, Oldemar Rodríguez-Rojas
Added 09 Dec 2010
Updated 09 Dec 2010
Type Journal
Year 2008
Where CLEIEJ
Authors Esteban Meneses, Oldemar Rodríguez-Rojas
Comments (0)