In this paper we propose a generic methodology for the automated generation of fuzzy models. The methodology is realized in three stages. Initially, a crisp model is created and in the second stage it is transformed to a fuzzy one. In the third stage, all parameters entering the fuzzy model are optimized. The proposed methodology is novel and generic since it can integrate alternative techniques in each of its stages. A specific realization of this methodology is implemented, using decision trees for the creation of the crisp model, the sigmoid function, the min
Markos G. Tsipouras, Themis P. Exarchos, Dimitrios