Sciweavers

FUIN
2006

On minimal models of the Region Connection Calculus

13 years 11 months ago
On minimal models of the Region Connection Calculus
Abstract. Region Connection Calculus (RCC) is one primary formalism of qualitative spatial reasoning. Standard RCC models are continuous ones where each region is infinitely divisible. This contrasts sharply with the predominant use of finite, discrete models in applications. In a recent paper, Li et al. (2004) initiate a study of countable models that can be constructed step by step from finite models. Of course, some basic problems are left unsolved, for example, how many nonisomorphic countable RCC models are there? This paper investigates these problems and obtains the following results: (i) the exotic RCC model described by Gotts (1996) is isomorphic to the minimal model given by Li and Ying (2004); (ii) there are continuum many non-isomorphic minimal RCC models, where a model is minimal if it can be isomorphically embedded in each RCC model.
Lirong Xia, Sanjiang Li
Added 12 Dec 2010
Updated 12 Dec 2010
Type Journal
Year 2006
Where FUIN
Authors Lirong Xia, Sanjiang Li
Comments (0)