Humans are idiosyncratic and variable: towards the same topic, they might hold different opinions or express the same opinion in various ways. It is hence important to model opinions at the level of individual users; however it is impractical to estimate independent sentiment classification models for each user with limited data. In this paper, we adopt a modelbased transfer learning solution – using linear transformations over the parameters of a generic model – for personalized opinion analysis. Extensive experimental results on a large collection of Amazon reviews confirm our method significantly outperformed a user-independent generic opinion model as well as several state-ofthe-art transfer learning algorithms.