This paper presents two lifetime models that describe two of the most common modes of operation of sensor nodes today, triggerdriven and duty-cycle driven. The models use a set of hardware parameters such as power consumption per task, state transition overheads, and communication cost to compute a node's average lifetime for a given event arrival rate. Through comparison of the two models and a case study from a real camera sensor node design we show how the models can be applied to drive architectural decisions, compute energy budgets and duty-cycles, and to preform side-by-side comparison of different platforms.