Sciweavers

ICNC
2009
Springer

Model-Free Learning and Control in a Mobile Robot

14 years 7 months ago
Model-Free Learning and Control in a Mobile Robot
A model-free, biologically-motivated learning and control algorithm called S-learning is described as implemented in an Surveyor SRV-1 mobile robot. S-learning demonstrated learning of robotic and environmental structure sufficient to allow it to achieve its goals (finding high- or low-contrast views in its environment). No modeling information about the task or calibration information about the robot’s actuators and sensors were used in S-learning’s planning. The ability of S-learning to make movement plans was completely dependent on experience it gained as it explored. Initially it had no experience and was forced to wander randomly. With increasing exposure to the task, S-learning achieved its goals with more nearly optimal paths. The fact that this approach is model-free implies that it may be applied to many other systems, perhaps even to systems of much greater complexity.
Brandon Rohrer, Michael Bernard, J. Daniel Morrow,
Added 26 May 2010
Updated 26 May 2010
Type Conference
Year 2009
Where ICNC
Authors Brandon Rohrer, Michael Bernard, J. Daniel Morrow, Fred Rothganger, Patrick Xavier
Comments (0)