Abstract. In this paper we address the problem of searching for knowledgeable persons within the enterprise, known as the expert finding (or expert search) task. We present a probabilistic algorithm using the assumption that terms in documents are produced by people who are mentioned in them. We represent documents retrieved to a query as mixtures of candidate experts language models. Two methods of personal language models extraction are proposed, as well as the way of combining them with other evidences of expertise. Experiments conducted with the TREC Enterprise collection demonstrate the superiority of our approach in comparison with the best one among existing solutions.