Sciweavers

VISAPP
2007

Modeling non-gaussian noise for robust image analysis

14 years 18 days ago
Modeling non-gaussian noise for robust image analysis
Accurate noise models are important to perform reliable robust image analysis. Indeed, many vision problems can be seen as parameter estimation problems. In this paper, two noise models are presented and we show that these models are convenient to approximate observation noise in different contexts related to image analysis. In spite of the numerous results on M-estimators, their robustness is not always clearly addressed in the image analysis field. Based on Mizera and Muller's recent fundamental work, we study the robustness of M-estimators for the two presented noise models, in the fixed design setting. To illustrate the interest of these noise models, we present two image vision applications that can be solved within this framework: curves fitting and edge-preserving image smoothing.
Sio-Song Ieng, Jean-Philippe Tarel, Pierre Charbon
Added 07 Nov 2010
Updated 17 Dec 2010
Type Conference
Year 2007
Where VISAPP
Authors Sio-Song Ieng, Jean-Philippe Tarel, Pierre Charbonnier
http://perso.lcpc.fr/tarel.jean-philippe/publis/visapp07a.html
Comments (0)