In this paper, we introduce and analyze a modification of the Hermitian and skewHermitian splitting iteration method for solving a broad class of complex symmetric linear systems. We show that the modified Hermitian and skew-Hermitian splitting (MHSS) iteration method is unconditionally convergent. Each iteration of this method requires the solution of two linear systems with real symmetric positive definite coefficient matrices. These two systems can be solved inexactly. We consider acceleration of the MHSS iteration by Krylov subspace methods. Numerical experiments on a few model problems are used to illustrate the performance of the new method.