We study the monitoring and fault-diagnosis problems for dense-time real-time systems, where observers (monitors and diagnosers) have access to digital rather than analog clocks. Analog clocks are infinitely-precise, thus, not implementable. We show how, given a specification modeled as a timed automaton and a timed automaton model of the digital clock, a sound and optimal (i.e., as precise as possible) digital-clock monitor can be synthesized. We also show how, given plant and digital clock modeled as timed automata, we can check existence of a digital-clock diagnoser and, if one exists, how to synthesize it. Finally, we consider the problem of existence of digital-clock diagnosers where the digital clock is unknown. We show that there are cases where a digital clock, no matter how precise, does not exist, even though the system is diagnosable with analog clocks. Finally, we provide a sufficient condition for digital-clock diagnosability.