In this paper, we address the problem of orthogonal frequency-division multiplexing (OFDM) channel estimation in the presence of phase noise (PHN) and carrier frequency offset (CFO). In OFDM systems, PHN and CFO cause two effects: the common phase error (CPE) and the intercarrier interference (ICI) which severely degrade the accuracy of the channel estimate. In literature, several algorithms have been proposed to solve this problem. Nevertheless, in all these existing schemes, both the PHN and the additive white Gaussian noise (AWGN) powers are assumed to be known. Because no a priori knowledge of PHN and AWGN powers is available at the receiver, we propose different strategies for the estimation of channel impulse response (CIR), CFO, PHN, and also the PHN and the AWGN powers. Based on Monte Carlo methods, the proposed approaches estimate these many unknowns in the time domain from a training OFDM symbol using either offline or online estimators. In the online case, we propose sequent...
F. Septier, Yves Delignon, A. Menhaj-Rivenq, Chris