Recent statistical performance surveys of search algorithms in difficult combinatorial problems have demonstrated the benefits of randomising and restarting the search procedure. Specifically, it has been found that if the search cost distribution (SCD) of the non-restarted randomised search exhibits a slower-than-exponential decay (that is, a “heavy tail”), restarts can reduce the search cost expectation. Recently, this heavy tail phenomenon was observed in the SCD’s of benchmark ILP problems. Following on this work, we report on an empirical study of randomised restarted search in ILP. Our experiments, conducted over a cluster of a few hundred computers, provide an extensive statistical performance sample of five search algorithms operating on two principally different ILP problems (artificially generated graph data and the wellknown “mutagenesis” problem). The sample allows us to (1) estimate the conditional expected value of the search cost (measured by the total num...