Detection and tracking of moving vehicles in airborne videos is a challenging problem. Many approaches have been proposed to improve motion segmentation on frameby-frame and pixel-by-pixel bases, however, little attention has been paid to analyze the long-term motion pattern, which is a distinctive property for moving vehicles in airborne videos. In this paper, we provide a straightforward geometric interpretation of a general motion pattern in 4D space (x, y, vx, vy). We propose to use the Tensor Voting computational framework to detect and segment such motion patterns in 4D space. Specifically, in airborne videos, we analyze the essential difference in motion patterns caused by parallax and independent moving objects, which leads to a practical method for segmenting motion patterns (flows) created by moving vehicles in stabilized airborne videos. The flows are used in turn to facilitate detection and tracking of each individual object in the flow. Conceptually, this approach is simi...
Gérard G. Medioni, Qian Yu