Genetic algorithms are a robust adaptive optimization technique based on a biological paradigm. They perform efficient search on poorly-defined spaces by maintaining an ordered pool of strings that represent regions in the search space. New strings are produced from existing strings using the genetic-based operators of recombinationandmutation. Combiningthese operatorswith natural selectionresults in the efficient useof hyperplaneinformation found in the problem to guide the search. The searches are not greatly influenced by local optima or non-continuous functions. Genetic algorithms have been successfully used in problems such as the traveling salesperson and scheduling job shops. Microcode compaction can be modeled as these same types of problems, which motivates the application of genetic algorithms in this domain.
Steven J. Beaty, Darrell Whitley, Gearold Johnson