Sciweavers

LOCA
2009
Springer

Multi Activity Recognition Based on Bodymodel-Derived Primitives

14 years 4 months ago
Multi Activity Recognition Based on Bodymodel-Derived Primitives
Abstract. We propose a novel model-based approach to activity recognition using high-level primitives that are derived from a human body model estimated from sensor data. Using short but fixed positions of the hands and turning points of hand movements, a continuous data stream is segmented in short segments of interest. Within these segments, joint boosting enables the automatic discovery of important and distinctive features ranging from motion over posture to location. To demonstrate the feasibility of our approach we present the user-dependent and acrossuser results of a study with 8 participants. The specific scenario that we study is composed of 20 activities in quality inspection of a car production process. Key words: Activity Recognition, Boosting, Human-Body Model
Andreas Zinnen, Christian Wojek, Bernt Schiele
Added 26 Jul 2010
Updated 26 Jul 2010
Type Conference
Year 2009
Where LOCA
Authors Andreas Zinnen, Christian Wojek, Bernt Schiele
Comments (0)