In this paper, we propose a multi-agent approach for solving a class of optimization problems involving expensive resources, where monolithic local search schemes perform miserably. More specifically, we study the class of bin-packing problems. Under our proposed Fine-Grained Agent System scheme, rational agents work both collaboratively and selfishly based on local search and mimic physics-motivated systems. We apply our approach to a generalization of bin-packing - the Inventory Routing Problem with Time Windows - which is an important logistics problem, and demonstrate the efficiency and effectiveness of our approach. Categories and Subject Descriptors I.2.11 [Distributed Artificial Intelligence] Coherence and coordination, Intelligent agents, Multiagent systems Keywords Multi-agent system, optimization problems, expensive resources.