This paper is concerned with the Multi-Objective Next Release Problem (MONRP), a problem in search-based requirements engineering. Previous work has considered only single objective formulations. In the multi-objective formulation, there are at least two (possibly conflicting) objectives that the software engineer wishes to optimize. It is argued that the multi-objective formulation is more realistic, since requirements engineering is characterised by the presence of many complex and conflicting demands, for which the software engineer must find a suitable balance. The paper presents the results of an empirical study into the suitability of weighted and Pareto optimal genetic algorithms, together with the NSGA-II algorithm, presenting evidence to support the claim that NSGA-II is well suited to the MONRP. The paper also provides benchmark data to indicate the size above which the MONRP becomes non–trivial. Categories and Subject Descriptors D.2.1 [SOFTWARE ENGINEERING]: Requireme...
Yuanyuan Zhang, Mark Harman, S. Afshin Mansouri