Bursty traffic is dominant in modern communication networks and keeps the call-level QoS assessment an open issue. ON-OFF traffic models are commonly used to describe bursty traffic. We propose an ON-OFF traffic model of a single link which accommodates service-classes of finite population (f-ON-OFF). Calls compete for the available link bandwidth under the complete sharing policy. Accepted calls enter the system via state ON and then may alternate between ON-OFF states. When a call is transferred to state OFF it releases the bandwidth held in state ON, while when a call tries to return to state ON, it re-requests its bandwidth. If it is available a new ON-period (burst) begins; otherwise the call remains in state OFF (burst blocking). We prove that the proposed f-ON-OFF has a product form solution, and we provide an accurate recursive formula for the call blocking probabilities calculation. For the burst blocking probabilities calculation we propose an approximate but robust for...
Ioannis D. Moscholios, Michael D. Logothetis, Mich