A novel technique for multi-scale smoothing of a free-form 3-D surface is presented. Complete triangulated models of 3-D objects are constructed (through fusion of range images) and are then described at multiple scales. This is achieved by convolving local parametrizations of the surface with 2-D Gaussian filters iteratively. Our method for local parametrization makes use of semigeodesic or goedesic polar coordinates as a natural and efficient way of sampling the local surface shape. The smoothing eliminates surface noise and small surface detail gradually. Our technique for 3-D multi-scale surface smoothing is independent of the underlying triangulation. It is also argued that the proposed technique is preferrable to volumetric smoothing or level set methods since it is applicable to incomplete surface data which occurs during occlusion.