A multi-view gait recognition method using recovered static body parameters of subjects is presented; we refer to these parameters as activity-specific biometrics. Our data consists of 18 subjects walking at both an angled and frontal-parallel view with respect to the camera. When only considering data from a single view, subjects are easily discriminated; however, discrimination decreases when data across views are considered. To compare between views, we use ground truth motioncapture data of a reference subject to find scale factors that can transform data from different views into a common frame (“walking-space”). Instead of reporting percent correct from a limited database, we report our results using an expected confusion metric that allows us to predict how our static body parameters filter identity in a large population: lower confusion yields higher expected discrimination power. We show that using motion-capture data to adjust vision data of different views to a comm...
Amos Y. Johnson, Aaron F. Bobick