This paper presents the combined use of gradient and mutual information for infrared and intensity templates matching. We propose to joint: (i) feature matching in a multiresolution context and (ii) information propagation through scale-space representations. Our method consists in combining mutual information with a shape descriptor based on gradient, and propagate them following a coarseto-fine strategy. The main contributions of this work are: to offer a theoretical formulation towards a multimodal stereo matching; to show that gradient and mutual information can be reinforced while they are propagated between consecutive levels; and to show that they are valid cost functions in multimodal template matchings. Comparisons are presented showing the improvements and viability of the proposed approach.