Tracking of regions and object boundaries in an image sequence is a well studied problem in image processing and computer vision. So far, numerous approaches tracking different features of the objects (contours, regions or points of interest) have been presented. Most of these approaches have problems with robustness. Typical reasons are noisy images, objects with identical features or partial occlusions of the tracked features. In this paper we propose a novel level set based tracking approach, that allows robust tracking on noisy images. Our framework is able to track multiple regions in an image sequence, where a level set function is assigned to every region. For already known or learned objects, transformation invariant shape priors can be added to ensure a robust tracking even under partial occlusions. Furthermore, we introduce a simple decision function to maintain the desired topology for multiple regions. Experimental results demonstrate the method for arbitrary numbers of sha...