Sciweavers

ICCV
2011
IEEE

N-best maximal decoders for part models

12 years 11 months ago
N-best maximal decoders for part models
We describe a method for generating N-best configurations from part-based models, ensuring that they do not overlap according to some user-provided definition of overlap. We extend previous N-best algorithms from the speech community to incorporate non-maximal suppression cues, such that pixel-shifted copies of a single configuration are not returned. We use approximate algorithms that perform nearly identical to their exact counterparts, but are orders of magnitude faster. Our approach outperforms standard methods for generating multiple object configurations in an image. We use our method to generate multiple pose hypotheses for the problem of human pose estimation from video sequences. We present quantitative results that demonstrate that our framework significantly improves the accuracy of a state-of-the-art pose estimation algorithm. We address the task of generating multiple candidate object configurations in an image or video, within the framework of part-based models. Su...
Dennis Park, Deva Ramanan
Added 11 Dec 2011
Updated 11 Dec 2011
Type Journal
Year 2011
Where ICCV
Authors Dennis Park, Deva Ramanan
Comments (0)