This paper investigates safe and efficient map-building strategies for a mobile robot with imperfect control and sensing. In the implementation, a robot equipped with a range sensor builds a polygonal map (layout) of a previously unknown indoor environment. The robot explores the environment and builds the map concurrently by patching together the local models acquired by the sensor into a global map. A well-studied and related problem is the Simultaneous Localization and Mapping (SLAM) problem, where the goal is to integrate the information collected during navigation into the most accurate map possible. However, SLAM does not address the sensor-placement portion of the map-building task. That is, given the map built so far, where should the robot go next? This is the main question addressed in this paper. Concretely, an algorithm is proposed to guide the robot through a series of "good" positions, where "good" refers to the expected amount and quality of the info...
Héctor H. González-Baños, Jea