This paper studies the question of how to run many distributed algorithms, solving independent problems, together as fast as possible. Suppose that we want to run distributed algorithms A1, A2 . . . , Ak in the CONGEST model, each taking at most dilation rounds, and where for each network edge, at most congestion messages need to go through it, in total over all these algorithms. A celebrated work of Leighton, Maggs, and Rao [22] shows that in the special case where each of these algorithms is simply a packet routing—that is, sending a message from a source to a destination along a given path—there is an O(congestion + dilation) round schedule. Note that this bound is trivially optimal. Generalizing the framework of LMR [22], we study scheduling general distributed algorithms and present two results: (a) an existential schedule-length lower bound of Ω(congestion +dilation· log n log log n ) rounds, (b) a distributed algorithm that produces a near-optimal O(congestion+dilation·...