Sciweavers

ICML
2008
IEEE

Nearest hyperdisk methods for high-dimensional classification

15 years 19 days ago
Nearest hyperdisk methods for high-dimensional classification
In high-dimensional classification problems it is infeasible to include enough training samples to cover the class regions densely. Irregularities in the resulting sparse sample distributions cause local classifiers such as Nearest Neighbors (NN) and kernel methods to have irregular decision boundaries. One solution is to "fill in the holes" by building a convex model of the region spanned by the training samples of each class and classifying examples based on their distances to these approximate models. Methods of this kind based on affine and convex hulls and bounding hyperspheres have already been studied. Here we propose a method based on the bounding hyperdisk of each class ? the intersection of the affine hull and the smallest bounding hypersphere of its training samples. We argue that in many cases hyperdisks are preferable to affine and convex hulls and hyperspheres: they bound the classes more tightly than affine hulls or hyperspheres while avoiding much of the samp...
Hakan Cevikalp, Bill Triggs, Robi Polikar
Added 17 Nov 2009
Updated 17 Nov 2009
Type Conference
Year 2008
Where ICML
Authors Hakan Cevikalp, Bill Triggs, Robi Polikar
Comments (0)