Abstract. In this paper, we present a new approach to indexing multidimensional data that is particularly suitable for the efficient incremental processing of nearest neighbor queries. The basic idea is to use index-striping that vertically splits the data space into multiple low- and medium-dimensional data spaces. The data from each of these lower-dimensional subspaces is organized by using a standard multi-dimensional index structure. In order to perform incremental NN-queries on top of index-striping efficiently, we first develop an algorithm for merging the results received from the underlying indexes. Then, an accurate cost model relying on a power law is presented that determines an appropriate number of indexes. Moreover, we consider the problem of dimension assignment, where each dimension is assigned to a lower-dimensional subspace, such that the cost of nearest neighbor queries is minimized. Our experiments confirm the validity of our cost model and evaluate the performance ...