Preserving individual privacy when publishing data is a problem that is receiving increasing attention. According to the k-anonymity principle, each release of data must be such that each individual is indistinguishable from at least k -1 other individuals. In this paper we study the problem of anonymity preserving data publishing in moving objects databases. We propose a novel concept of k-anonymity based on co-localization that exploits the inherent uncertainty of the moving object's whereabouts. Due to sampling and positioning systems (e.g., GPS) imprecision, the trajectory of a moving object is no longer a polyline in a three-dimensional space, instead it is a cylindrical volume, where its radius represents the possible location imprecision: we know that the trajectory of the moving object is within this cylinder, but we do not know exactly where. If another object moves within the same cylinder they are indistinguishable from each other. This leads to the definition of (k, )...