Sciweavers

DKE
2007

A new algorithm for clustering search results

14 years 24 days ago
A new algorithm for clustering search results
We develop a new algorithm for clustering search results. Differently from many other clustering systems that have been recently proposed as a post-processing step for Web search engines, our system is not based on phrase analysis inside snippets, but instead uses Latent Semantic Indexing on the whole document content. A main contribution of the paper is a novel strategy – called Dynamic SVD Clustering – to discover the optimal number of singular values to be used for clustering purposes. Moreover, the algorithm is such that the SVD computation step has in practice good performance, which makes it feasible to perform clustering when term vectors are available. We show that the algorithm has very good classification performance, and that it can be effectively used to cluster results of a search engine to make them easier to browse by users. The algorithm has being integrated into the Noodles search engine, a tool for searching and clustering Web and desktop documents.
Giansalvatore Mecca, Salvatore Raunich, Alessandro
Added 13 Dec 2010
Updated 13 Dec 2010
Type Journal
Year 2007
Where DKE
Authors Giansalvatore Mecca, Salvatore Raunich, Alessandro Pappalardo
Comments (0)