This paper proposes a new perspective for solving systems of complex nonlinear equations by simply viewing them as a multiobjective optimization problem. Every equation in the system represents an objective function whose goal is to minimize the difference between the right and left terms of the corresponding equation. An evolutionary computation technique is applied to solve the problem obtained by transforming the system into a multiobjective optimization problem. The results obtained are compared with a very new technique that is considered as efficient and is also compared with some of the standard techniques that are used for solving nonlinear equations systems. Several well-known and difficult applications (such as interval arithmetic benchmark, kinematic application, neuropsychology application, combustion application, and chemical equilibrium application) are considered for testing the performance of the new approach. Empirical results reveal that the proposed approach is able ...