Determining the maximum number of D-dimensional spheres of radius r that can be adjacent to a central sphere of radius r is known as the Kissing Number Problem (KNP). The problem has been solved for 2, 3 and very recently for 4 dimensions. We present two nonlinear (nonconvex) mathematical programming models for the solution of the KNP. We solve the problem by using two stochastic global optimization methods: a Multi Level Single Linkage algorithm and a Variable Neighbourhood Search. We obtain numerical results for 2, 3 and 4 dimensions.