We present in this paper a new interconnect-driven multilevel floorplanner, called interconnect-driven multilevelfloorplanning framework (IMF), to handle large-scale buildingmodule designs. Unlike the traditional multilevel framework that adopts the "-shaped" framework (inaccurately called the "V-cycle" framework in the literature): bottom-up coarsening followed by top-down uncoarsening, the IMF, in contrast, works in the "V-shaped" manner: top-down uncoarsening (partitioning) followed by bottom-up coarsening (merging). The top-down partitioning stage iteratively partitions the floorplan region based on min-cut bipartitioning with exact net-weight modeling to reduce the number of global interconnections and, thus, the total wirelength. Then, the bottom-up merging stage iteratively applies fixed-outline floorplanning using simulated annealing for all regions and merges two neighboring regions recursively. Experimental results show that the IMF obtains the b...