Sciweavers

JCT
2006

New polytopes from products

13 years 11 months ago
New polytopes from products
We construct a new 2-parameter family Emn, m, n 3, of self-dual 2-simple and 2-simplicial 4-polytopes, with flexible geometric realisations. E44 is the 24-cell. For large m, n the f-vectors have "fatness" close to 6. The Et-construction of Paffenholz and Ziegler applied to products of polygons yields cellular spheres with the combinatorial structure of Emn. Here we prove polytopality of these spheres. More generally, we construct polytopal realisations for spheres obtained from the Et-construction applied to products of polytopes in any dimension d 3, if these polytopes satisfy some consistency conditions. We show that the projective realisation space of E33 is at least nine dimensional and that of E44 at least four dimensional. This proves that the 24-cell is not projectively unique. All Emn for relatively prime m, n 5 have automorphisms of their face lattice not induced by an affine transformation of any geometric realisation. The group Zm
Andreas Paffenholz
Added 13 Dec 2010
Updated 13 Dec 2010
Type Journal
Year 2006
Where JCT
Authors Andreas Paffenholz
Comments (0)