Grid cells in the entorhinal cortex are generally considered to be a central part of a path integration system supporting the construction of a cognitive map of the environment in the brain. Guided by this hypothesis existing computational models of grid cells provide a wide range of possible mechanisms to explain grid cell activity in this specific context. Here we present a complementary grid cell model that he observed grid cell behavior as an instance of a more abstract, general principle by which neurons in the higher-order parts of the cortex process information.