Sciweavers

CAIP
2007
Springer

A New Wavelet-Based Texture Descriptor for Image Retrieval

14 years 4 months ago
A New Wavelet-Based Texture Descriptor for Image Retrieval
This paper presents a novel texture descriptor based on the wavelet transform. First, we will consider vertical and horizontal coefficients at the same position as the components of a bivariate random vector. The magnitud and angle of these vectors are computed and its histograms are analyzed. This empirical magnitud histogram is modelled by using a gamma distribution (pdf). As a result, the feature extraction step consists of estimating the gamma parameters using the maxima likelihood estimator and computing the circular histograms of angles. The similarity measurement step is done by means of the well-known Kullback-Leibler divergence. Finally, retrieval experiments are done using the Brodatz texture collection obtaining a good performance of this new texture descriptor. We compare two wavelet transforms, with and without downsampling, and show the advantage of the second one, which is translation invariant, for the construction of our texture descriptor.
Esther de Ves, Ana M. C. Ruedin, Daniel G. Acevedo
Added 12 Aug 2010
Updated 12 Aug 2010
Type Conference
Year 2007
Where CAIP
Authors Esther de Ves, Ana M. C. Ruedin, Daniel G. Acevedo, Xaro Benavent, Leticia Seijas
Comments (0)