Questions about order versus disorder in systems and models have been fascinating scientists over the years. In Computer Science, order is intimately related to sorting, commonly meant as the task of arranging keys in increasing or decreasing order with respect to an underlying total order relation. The sorted organization is amenable for searching a set of n keys, since each search requires (log n) comparisons in the worst case, which is optimal if the cost of a single comparison can be considered a constant. Nevertheless, we prove that disorder implicitly provides more information than order does. For the general case of searching an array of multidimensional keys, whose comparison cost is proportional to their length (and hence cannot be considered a constant), we demonstrate that "suitable" disorder gives better bounds than those derivable by using the natural lexicographic order. We start out from previous work done by Andersson, Hagerup, H