Sciweavers

IPCO
1998

Non-approximability Results for Scheduling Problems with Minsum Criteria

14 years 25 days ago
Non-approximability Results for Scheduling Problems with Minsum Criteria
We provide several non-approximability results for deterministic scheduling problems whose objective is to minimize the total job completion time. Unless P = NP, none of the problems under consideration can be approximated in polynomial time within arbitrarily good precision. Most of our results are derived by APX-hardness proofs. We show that, whereas scheduling on unrelated machines with unit weights is polynomially solvable, the problem becomes APX-hard if release dates or weights are added. We further show APX-hardness for scheduling in flow shops, job shops, and open shops. We also investigate the problems of scheduling on parallel machines with precedence constraints and unit processing times, and two variants of the latter problem with unit communication delays; for these problems we provide lower bounds on the worst-case behavior of any polynomial-time approximation algorithm through the gap reduction technique.
Han Hoogeveen, Petra Schuurman, Gerhard J. Woeging
Added 01 Nov 2010
Updated 01 Nov 2010
Type Conference
Year 1998
Where IPCO
Authors Han Hoogeveen, Petra Schuurman, Gerhard J. Woeginger
Comments (0)