Abstract—In transportation network research, the main approach for predicting traffic distribution due to noncooperative vehicle choices has been through fluid type models. The basic model considers a continuum of infinitesimal “non-atomic” vehicles, each seeking the shortest path to its destination. The resulting equilibrium turns out to be much simpler to characterize in comparison to the finite-vehicle case, yet provides a good approximation to the latter. A less familiar fluid-type model uses a continuum limit for the network topology. The limit network is a continuum plane which inherits its cost structure from the original network, and the corresponding equilibrium is identified as the continuum traffic equilibrium. This paper considers a similar equilibrium notion in a framework of a load balancing problem involving two processors, each requiring non-negligible workload (or “flow”) to be handled by network resources. Besides a congestion cost at each resource (...
Eitan Altman, Ishai Menache, Asuman E. Ozdaglar