This paper proposes a novel method for computing linear basis images from tensor-valued image data. As a generalization of the nonnegative matrix factorization, the proposed method aims to approximate a collection of diffusion tensor images using nonnegative linear combinations of basis tensor images. An efficient iterative optimization algorithm is proposed to solve this factorization problem. We present two applications: the DTI segmentation problem and a novel approach to discover informative and common parts in a collection of diffusion tensor images. The proposed method has been validated using both synthetic and real data, and experimental results have shown that it offers a competitive alternative to current state-of-the-arts in terms of accuracy and efficiency.
Yuchen Xie, Jeffrey Ho, Baba C. Vemuri