A brain-computer interface is a device that uses signals recorded from the brain to directly control a computer. In the last few years, P300-based braincomputer interfaces (BCIs) have proven an effective and reliable means of communication for people with severe motor disabilities such as amyotrophic lateral sclerosis (ALS). Despite this fact, relatively few individuals have benefited from currently available BCI technology. Independent BCI use requires easily acquired, good-quality electroencephalographic (EEG) signals maintained over long periods in less-than-ideal electrical environments. Conventional, wet-sensor, electrodes require careful application. Faulty or inadequate preparation, noisy environments, or gel evaporation can result in poor signal quality. Poor signal quality produces poor user performance, system downtime, and user and caregiver frustration. This study demonstrates that a hybrid dry electrode sensor array (HESA) performs as well as traditional wet electrodes and...
Eric W. Sellers, Peter J. Turner, William A. Sarna