Realistic interfacial energy densities are often non-convex, which results in backward parabolic behavior of the corresponding anisotropic curve shortening flow, thereby inducing phenomena such as the formation of corners and facets. Adding a term that is quadratic in the curvature to the interfacial energy yields a regularized evolution equation for the interface, which is fourth-order parabolic. Using a semi-implicit time discretization, we present a variational formulation of this equation, which allows the use of linear finite elements. The resulting linear system is shown to be uniquely solvable. We also present numerical examples.