Evaluation of object detection algorithms is a non-trivial task: a detection result is usually evaluated by comparing the bounding box of the detected object with the bounding box of the ground truth object. The commonly used precision and recall measures are computed from the overlap area of these two rectangles. However, these measures have several drawbacks: they don't give intuitive information about the proportion of the correctly detected objects and the number of false alarms, and they cannot be accumulated across multiple images without creating ambiguity in their interpretation. Furthermore, quantitative and qualitative evaluation is often mixed resulting in ambiguous measures. In this paper we propose a new approach which tackles these problems. The performance of a detection algorithm is illustrated intuitively by performance graphs which present object level precision and recall depending on constraints on detection quality. In order to compare different detection alg...