Sciweavers

ACCV
2007
Springer

Object Detection Combining Recognition and Segmentation

14 years 6 months ago
Object Detection Combining Recognition and Segmentation
Abstract. We develop an object detection method combining top-down recognition with bottom-up image segmentation. There are two main steps in this method: a hypothesis generation step and a verification step. In the top-down hypothesis generation step, we design an improved Shape Context feature, which is more robust to object deformation and background clutter. The improved Shape Context is used to generate a set of hypotheses of object locations and figureground masks, which have high recall and low precision rate. In the verification step, we first compute a set of feasible segmentations that are consistent with top-down object hypotheses, then we propose a False Positive Pruning(FPP) procedure to prune out false positives. We exploit the fact that false positive regions typically do not align with any feasible image segmentation. Experiments show that this simple framework is capable of achieving both high recall and high precision with only a few positive training examples and...
Liming Wang, Jianbo Shi, Gang Song, I-fan Shen
Added 06 Jun 2010
Updated 06 Jun 2010
Type Conference
Year 2007
Where ACCV
Authors Liming Wang, Jianbo Shi, Gang Song, I-fan Shen
Comments (0)