Tracking is usually performed at a single level of data resolution. This paper describes a multi-resolution tracking framework developed with efficiency and robustness in mind. Efficiency is achieved by processing low resolution data whenever possible. Robustness results from multiple level coarse-to-fine searching in the tracking state space. We combine sequential filtering both in time and resolution levels int a probabilistic framework. A color blob tracker is implemented and the tracking results are evaluated in a number of experiments.
Son Dinh Tran, Larry S. Davis