Sciweavers

ALT
2010
Springer

Online Multiple Kernel Learning: Algorithms and Mistake Bounds

14 years 2 months ago
Online Multiple Kernel Learning: Algorithms and Mistake Bounds
Online learning and kernel learning are two active research topics in machine learning. Although each of them has been studied extensively, there is a limited effort in addressing the intersecting research. In this paper, we introduce a new research problem, termed Online Multiple Kernel Learning (OMKL), that aims to learn a kernel based prediction function from a pool of predefined kernels in an online learning fashion. OMKL is generally more challenging than typical online learning because both the kernel classifiers and their linear combination weights must be learned simultaneously. In this work, we consider two setups for OMKL, i.e. combining binary predictions or real-valued outputs from multiple kernel classifiers, and we propose both deterministic and stochastic approaches in the two setups for OMKL. The deterministic approach updates all kernel classifiers for every misclassified example, while the stochastic approach randomly chooses a classifier(s) for updating according to ...
Rong Jin, Steven C. H. Hoi, Tianbao Yang
Added 26 Oct 2010
Updated 26 Oct 2010
Type Conference
Year 2010
Where ALT
Authors Rong Jin, Steven C. H. Hoi, Tianbao Yang
Comments (0)