Ontology mapping is to find semantic correspondences between similar elements of different ontologies. It is critical to achieve semantic interoperability in the WWW. This paper proposes a new generic and scalable ontology mapping approach based on propagation theory, information retrieval technique and artificial intelligence model. The approach utilizes both linguistic and structural information, measures the similarity of different elements of ontologies in a vector space model, and deals with constraints using the interactive activation network. The results of pilot study, the PRIOR, are promising and scalable.